☰ MENU

Função no Enem

Para resolver questões com função no Enem, é importante identificar os coeficientes e as raízes das funções de 1° ou 2° grau.

Publicado por Amanda Gonçalves Ribeiro
Prepare-se para o Enem e retire suas dúvidas sobre funções do 1° e 2° grau
Prepare-se para o Enem e retire suas dúvidas sobre funções do 1° e 2° grau

Olá, candidatos! Frequentemente vemos nas provas de “Matemática e suas Tecnologias” questões que envolvem funções, sejam elas do 1° grau ou do 2° grau. Em alguns casos, podemos ver inclusive questões das provas de “Ciências da Natureza e suas tecnologias” que envolvem o conhecimento sobre funções. Vamos então relembrar alguns conceitos importantes para resolver qualquer tipo de questão com função no Enem.

Função do 1° Grau

Uma função do 1° grau ou função afim é do tipo f(x) = ax + b, com a e b , sendo que a é o coeficiente de x e  , o termo constante.

O zero ou a raiz da equação é o valor de x para o qual temos f(x) = 0. Então, se f(x) = ax + b e queremos encontrar f(x) = 0, faremos:

f(x) = 0
ax + b = 0
ax = – b
x = 
– b
       a

Podemos dizer que a raiz de uma equação do 1° grau é dada por x = – b/a.

Função do 2° Grau

Uma função do tipo f(x) = ax² + bx + c, com a, b e   , é uma função do 2° grau ou função quadrática. Os termos a, b e c são ditos coeficientes, e a deve ser necessariamente diferente de zero (a ≠ 0) para que se tenha uma função do 2º grau.

Ela pode ter até duas raízes ou zeros da equação. Para determinar quais são os valores de x, tais que f(x) = 0, nós utilizamos a fórmula de Bhaskara:

O gráfico de uma função do 2° grau é uma parábola. A partir de algumas fórmulas simples, podemos identificar os pontos notáveis da parábola. As coordenadas do vértice da parábola podem ser encontradas através de:

xv = – b
           2a

yv = – Δ
          
4a

Agora que relembramos conceitos importantes sobre funções do 1° e do 2° grau, vamos resolver duas questões sobre função no Enem que caíram em provas anteriores.

1ª Questão com função no Enem de 2013

A parte interior de uma taça foi gerada pela rotação de uma parábola em torno de um eixo z, conforme mostra a figura.


1ª questão com função – Enem 2013

A função real que expressa a parábola, no plano cartesiano da figura, é dada pela lei  , onde C é a medida da altura do líquido contido na taça, em centímetros. Sabe-se que o ponto V, na figura, representa o vértice da parábola, localizado sobre o eixo x. Nessas condições, a altura do líquido contido na taça, em centímetros, é

a) 1.

b) 2.

c) 4.

d) 5.

e) 6.

Resolução:

Conhecendo a função do 2° grau  , seus coeficientes são a = 3/2, b = – 6 e c = C. Vamos então identificar as coordenadas do vértice V da parábola:

xv = – b
          2a
xv = – (– 6)
            2.(3/2)
xv = 6
        3
xv = 2
yv = – Δ
        4a
yv = – (b² – 4.a.c)
           4a
yv = – [(– 6)² – 4.(3/2).C]
         4.(3/2)
yv = – [36 – 2.3.C]
         2.3
yv = – 36 + 6.C
        6
yv = – 6 + C

Mas o vértice está localizado no eixo x, logo yv = 0, portanto, temos:

yv = – 6 + C
0 = – 6 + C
C = 6

A altura do líquido é de 6 cm, logo a alternativa correta é a letra e.

2ª Questão com função no Enem de 2011

O prefeito de uma cidade deseja construir uma rodovia para dar acesso a outro município. Para isso, foi aberta uma licitação na qual concorreram duas empresas. A primeira cobrou R$ 100 000,00 por km construído (n), acrescidos de um valor fixo de R$ 350 000,00, enquanto a segunda cobrou R$ 120 000,00 por km construído (n), acrescidos de um valor fixo de R$ 150 000,00. As duas empresas apresentam o mesmo padrão de qualidade dos serviços prestados, mas apenas uma delas poderá ser contratada.

Do ponto de vista econômico, qual equação possibilitaria encontrar a extensão da rodovia que tornaria indiferente para a prefeitura escolher qualquer uma das propostas apresentadas?

a) 100n + 350 = 120n + 150 ←
b) 100n + 150 = 120n + 350
c) 100(n + 350) = 120(n + 150)
d) 100(n + 350 000) = 120(n + 150 000)
e) 350(n + 100 000) = 150(n + 120 000)

Resolução:

Vamos identificar a primeira empresa descrita como Empresa A e a segunda como Empresa B. Podemos utilizar funções do 1° grau para descrever o preço cobrado por cada empresa. A empresa A tem um custo fixo de R$ 350 000,00 e cobra R$ 100 000,00 por km construído (n), então 350 000 é o termo constante e 100 000 é o coeficiente da variável n. A função que representa a empresa A é:

yA = an + b
yA = 100000.n + 350000

Para a empresa B, podemos afirmar que o custo fixo de R$ 150 000,00 é o termo constante e o valor de R$ 120 000,00 por km construído (n) é o coeficiente da variável n. Portanto, a função do preço cobrado pela empresa B é:

yB = an + b
yB = 120000.n + 150000

O valor cobrado pelas duas empresas será o mesmo quando yA = yB, então, temos:

yA = yB
100000.n + 350000 = 120000.n + 150000

Dividindo ambos os membros da equação por 1000, teremos:

100.n + 350 = 120.n + 150

A alternativa que apresenta a equação correta é a letra a.

Bons estudos!

 

Fontes:

Provas do Enem de 2013 e 2011.

Versão mobile

Pesquisa de faculdade

MEC divulga resultado da lista de espera do ProUni 2025

Os candidatos pré-selecionados pela lista de espera do ProUni 2025 deverão comprovar as informações apresentadas.


Enem 2025: Inep divulga datas e edital de isenção de taxa de inscrição

Podem se inscrever estudantes da rede pública, de baixa renda e participantes do Pé de Meia


Inep abre justificativa de ausência do Encceja 2024

Devem solicitar a justificativa da ausência participantes que se inscrevram para a última edição do exame e não comparceram.


Edital do Encceja 2025 é publicado. Veja datas e regras

Exame é voltado a estudantes que não terminaram os ensinos fundamental ou médio em idade regular


Enem 2024: correção da redação e notas de treineiros estão disponíveis

Inep disponibilizou também a correção detalhada da redação do Enem 2024 para todos candidatos


MEC solta resultado da segunda chamada do ProUni 2025: confira aprovados

Estudantes pré-selecionados na 2ª chamada do ProUni 2025 devem complementar informações


MEC divulga resultado do Fies 2025

Fundo de Financiamento Estudantil ofertou mais de 67 mil vagas em universidades particulares


SiSU 2025: começa a convocação de aprovados na lista de espera hoje (12)

Estudantes devem ficar atentos aos canais oficiais de comunicação das instituições de ensino superior


Fies 2025: inscrições para o programa terminam nesta sexta (7)

Ministério da Educação (MEC) oferece mais de 67 mil vagas na primeira edição do Fies 2025


MEC publica resultado do ProUni 2025

Programa Universidade para Todos ofertou mais de 338 mil vagas em universidades privadas


MEC abre inscrições para o Fies 2025 do primeiro semestre

Mais de 67 mil vagas de financiamento estudantil para o ensino superior privado são oferecidos no Fies 2025 do primeiro semestre


Inscrição do ProUni 2025 encerra hoje (28)

Programa do MEC oferece mais de 338 mil bolsas de estudo em universidades particulares